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Abstract-The problem of heat transfer to a slug flow past a flat plate of finite dimensions is considered. 
Heat is introduced to the system either by means of a known flux at the outside surface of the plate or by 
means of a distributed heat source in the plate. Two dimensional conduction occurs in the plate. The 

temperature distribution in the plate and fluid is found in terms of a series expansion. 

NOMENCLATURE 

a, plate thickness; 
An, &a, Fourier coefficients; 
b, = a/L; 
kf, ks, solid and fluid conductivities; 
K = k&f; 
L, plate length; 
4w, heat introduced at plate surface; 
4e heat generation in solid ; 

w> is., = qwLlk,Tfo; 
= qsL2/k,Tm; 

s, Laplace transform variable; 
Tf, Ts, fluid and solid temperatures ; 
Tro, inlet fluid temperature; 
VX, fluid velocity; 
K = vzL/a; 
x, direction along plate ; 
x = x/L; 
Y9 direction normal to plate; 
Y, = YlG 
a, fluid thermal diffusivity ; 
x n2) eigenvalue; 
e 8) = (T, - T’.o)/Tro; 
Of> = O’.. - Tro)lTfo. 

INTRODUCTION 

IN MOST analyses of heat transfer to forced 
convective flow, the temperature, the heat flux, 
or a combination of the two is given on the 
boundaries; the temperature distribution in the 
fluid and (or) the heat flux into the fluid are then 
determined. In some cases, however, the tempera- 
ture or flux conditions at the bounding surface 
cannot be known a priori. In these cases, it is 

necessary to solve the equation of energy 
transport for the fluid simultaneously with the 
energy equation for the bounding solid. The 
equations are coupled by appropriate boundary 
conditions at the fluid-solid interface. 

Heat transfer to slug flow between flat plates 
and in a circular tube has been studied by Chu 
and Bankoff [I]. A step temperature change 
was imposed on the outside surface and the 
heat flux and temperature on the inside surface 
found by means of a Fourier transform. Con- 
duction occurs in the infinite length walls in two 
directions, i.e. parallel to and normal to the 
direction of flow. Numerical results show that 
the wall conduction smooths out the region of 
high heat flux which would occur if the wall had 
negligible thickness. Perelman [2] considered 
the problem of slip flow past a semi-infinite 
(semi-infinite both parallel to and normal to the 
direction of flow) solid having distributed heat 
sources. An analytical solution was obtained for 
the integral equation arising from coupling the 
Laplace transform solution for the fluid and the 
Fourier transform solution for the solid. No 
numerical results were given. Perelman also 
considered the more complex problem of trans- 
port to a laminar boundary layer. Some studies 
have also been made of the effect of one dimen- 
sional wall conduction in smoothing out peri- 
pheral temperature gradients in circular tubes 
[3] and in rectangular channels [4]. 

In this work, fluid with a constant velocity 
profile flowing past a finite length plate will be 
considered. The system is shown in Fig. 1. The 
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FIG. 1. Plate and fluid. 

fluid approaches at a known temperature, and 
heat is introduced by means of a known heat 
flux at the bottom of the plate or by distributed 
heat sources in the solid. Conduction occurs in 
the plate in both the longitudinal and transverse 
directions; heat flows in the fluid by convection 
in the direction of flow and by conduction away 
from the plate. Expressions for the temperature 
distributions in the solid and in the fluid are 
found and the effect of two dimensional wall 
conduction on heat transfer to a slug flow is 
determined. 

ANALYSIS 

For slug flow, constant fluid and solid pro- 
perties, and negligible fluid conduction in the 
direction of motion, the dimensionless energy 
equations for the fluid and solid respectively are 

(1) 

(2) 

with boundary conditions 

X=0 e, = 0 b<Y<cc 

Y=co 0, = 0 

x=0 

> 

80, 
-z 

x=1 ax 
0 0< Y<b 

Y=O 
80, 

-==-QW 3Y 

Y=b es = e, 

Y=b 
ae, ae, 

“ar=ay 

The last two conditions insure continuity of 
temperature and heat flux at the interface between 
the solid and fluid. 

Consider first the case in which Qtfi(X), the 
heat flux at Y = 0, is an arbitrary function of X 
but in which QS, the heat generated within 
the solid, is zero. Under these conditions, the 
solution of equation (2) satisfying the boundary 
conditions at X = 0, X = 1, and Y -= 0 is 

8, = AoY + B. + 5 cos hnX(An sinh A, Y + 
?Z=l 

where A, = nn 

Bn cash A, Y) (3) 

Ao= - j @o(X) dX 
0 

1 

An = -;; 
s 

Qw(X) cos X,X dX 

0 
n-1,2,.... 

The constants Bo, BI, Bz, . . . remain to be 
determined. From (3), the temperature and the 
temperature gradient at the solid-liquid inter- 
face (Y = b) may be determined: 

0,(X, b) = Aob + BO + 2 cos h,X(A, sinh hb 
12=1 

+ Bn cash Xnb) (4) 

aedx, b) 
i3Y 

= ‘40 + g cos X,X(A,h, 
n=1 

cash h,b + Bnhn sinh hnb) (5) 

The as yet unknown constants B will be deter- 
mined by the use of equations (4) and (5), and 
the differential equation and boundary con- 
ditions for the fluid. The Laplace transform of 
(1) yields 

which has a solution 

8, = C exp [-VA s: Y] + Dexp [+V* sa Y] 

(7) 

The constant D is zero since the temperature 
must remain finite at Y = co. From (7), the 
gradient of the transformed fluid temperature at 
Y = b is seen to be 

%(s, b) --~ = 
3Y 

-V*d Cexp [-VVth b] (8) 



The constant C is evaluated by equating (8) 
to the transform of (5). If C is found in this 
manner and then substitute into (7), the trans- 
formed t~~~~~atu~e distribution in the Atid is 
seen to be 

is-found to be 

x 

J 
a 

Equations (3) and (IQ) now give the te~~~~- 
ture d~strib~~o~ in the solid and &id ~s~~t~v~l~ 
in terms of the still ~nd~t~~~in~d ~ollsta~t~ 
Bo, &, &, . . . . There rermins one unused 
boundary condition to determine these con- 
stants, viz, ~~nti~ui~ of te~~~ratur~ at Y =: t5, 

where + and 6, are given by (10) and (3) respeca 
tively. Integrating equation (11) over the length 
of the @ate yields 

Muhiplying (11) by cos @X5 j = 1, 2, . . . and 
integrating yields 

n=I f 

IZquations (I4) and (IS) may be ~ea~~~~ged in 
the form 

where the && and Ff are anon_ The lignite 
system of equations was truncated and solved 
for B, using Jordan’s method. It was found that 
by using up to a 40 x 40 matrix that accurate 
values of & could be obtained up to n = 20, 

Consider now the ca3e of constant distributed 
heat ~~~~~a~o~ in ibe solid with no beat input 
at the outside surface of the #ate, i.e. Qs = cons& 
Qm = 0, The te~~rat~~~ in the soIid is seen 
to be 
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0,(X, Y) = S,: -i_ g B; cos AnX cash h, Y - 
s-1 

YZQS 
2 (17) 

At Y = b, there is 

a&(x, b) ~- = 
ay 

-bQs - g Bbh,cos &Xsinh hnb 
n-1 

(19 

Equations (4) and (5) become for constant QW 

i!&(X, b) = -bQ, + 2 Bn cos h,Xcosh X,b 
n-1 

(21) 
It is seen by comparison of (18) and (19) with 
(20) and (21) for QW = Q,b, that if (18) and (19) 
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FIG. 2. Temperature at solid-liquid surface. 
K== 644, V= I.81 x 105, Q = 1. 

I, h = 0; II, h :-- 0.01; m, h = 0.05: IV, h =- 0.1. 
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FIG. 3. Temperature at solid-liquid surface. 
K = 644, Y = 3.62 s 105, Q = 1. 

I, 6 = 0; II, h = 0.01; 81, b := 0.05; IV, b = 0.1. 
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FIG. 4. Temperature at solid-liquid surface. 
V= 1.81 x 105, Q = 644/K, b = 0.1. 

I, K = 6.44; II, K = 644; III, K :: 64000. 
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were used along with the energy equation for the 
fluid to determine the constants Sk, the results 
would be 

B:, = Bn 

(22) 

The temperature at the solid-liquid interface, 
and throughout the fluid, is therefore the same 
for the case of constant heat generation through- 
out the solid as for a constant heat input at the 
outside surface of the plate. The interface 
temperature is again given by Figs. 2, 3, and 4. 
The temperature distribution in the solid is, of 
course, different in the two cases. 

DISCUSSION OF IU3SIXT.S 

The coefficients Bgz and the temperature at the 
solid-liquid interface were evaluated for O-0 < 
b < O-1, 6-44 < K < 64 000, and 1.81 x 105 9 
Y < 1.36 x 107. The effect of wall conduction on 
heat transfer to the fluid increased with increas- 
ing plate thickness to length ratio b, increasing 
conductivity ratio K, and with decreasing 
dimensionless velocity V, where V is the product 
of the Prandtl number and the Reynolds number 
based on plate length. For K = 6-44, wall con- 
duction has a negligible effect, even for the 
lowest fluid velocity and thickest plate con- 
sidered. The temperature of the solid-fluid 
interface is shown in Figs. 2 and 3 for K = 644, 
V = 1.81 x 10s and 3.62 x 106 respectively, 
with dimensionless plate thickness b as a para- 
meter. For zero plate thickness the temperature 
assumes the well-known parabolic shape, as 
shown by the curves b = 0. For increasing 6, 
the temperature distribution tends to be leveled 
off, as would be expected. From Fig. 2, it is 
seen that for V = 1.81 x 105 there is an effect 
of wall conduction even for the thinnest plate 
considered (b = O-01). The effect increases with 
increasing plate thickness. For V = 3.62 x 106 
(Fig. 3), the effect is very small for b = O*Ol. 
Figure 4 shows the surface temperature dis- 
tribution as a function of K for a plate thickness 
of O-1. K = 6.44 gives a surface temperature 
distribution which is essentialty that which 
would be obtained by neglecting the plate con- 

duction. The highest conductivity ratio con- 
sidered, K = 64 400, results in a surface tempera- 
ture distribution which is almost constant; a 
constant tem~rature would result from an 
infinite K. Values for the coefficients Bs as well 
as the temperature at the liquid-solid surface 
for other values of the parameters can be found 
in reference [S]. 

In summary, it may be said that for the 
physical situation considered here that wall 
conduction will not be important for b < 0.01 
or for K < 644. If both of these conditions are 
not met, wall conduction may or may not be 
important depending on the values of the other 
parameters. This is to be contrasted to the results 
on an infinite length plate of finite thickness [l] 
in which even in the case of K = O-4 the surface 
temperature distribution is affected by wall 
conduction because of the upstream conduction. 
A study of the effect of wall conduction on peri- 
pheral temperature distributions [4] in a channel 
showed that there is an effect of wall conduction 
for lower values of K than would be significant 
with the geometry considered in this work. 

It is of interest to consider the effect of plate 
length on the heat transfer. For small values of 
K, plate length has a negligible influence. When 
K is small, the solution approaches that of heat 
transfer to a slug flow neglecting wall conduction, 
in which case plate length is not important. 
For higher values of K, increasing the plate 
length will increase the solid-liquid interface 
temperature and therefore the heat transfer to 
the liquid at every position along the plate if 
the heat per unit length introduced to the system 
is the same. This may be most easily seen for 
very large K. In this case the interface tempera- 
ture approaches a constant. In order for the 
total heat transferred to the liquid to remain 
equal to the total heat introduced to the plate, 
the heat transfer to the liquid at an upstream 
position must increase to compensate for the 
fact that at a downstream position the heat flux 
to the fluid will be less than that into the plate 
at the same value of X. 
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R&urn&-Le probleme du transport de chaleur avec un Bcoulement a vitesse uniforme le long d’une 
plaque plane de dimensions finies est etudie. La chaleur est introduite dans le systeme, soit au moyen 
d’un flux de chaleur connu a la surface exttrieure de la plaque, soit au moyen d’une source de chaleur 
repartie dans la plaque. Une conduction bidimensionnelle se produit dans la plaque. La distribution 

de temperature dans la plaque et le fluide est obtenue sous la forme d’un developpement en serie. 

Zusammenfassung-Das Problem des Warmetibergangs bei einer Kolbenstromungentlangeinerebenen 
Platte endlicher Abmessungen wird theoretisch untersucht. Warme wird dem System entweder als 
bekannter Wlrmefluss an der Busseren Plattenoberflache oder durch verteilte Warmequellen in der 
Platte zugefiihrt. Zweidimensionale Leitung tritt in der Platte auf. Die Temperaturverteilung in der 

Platte und in der Fliissigkeit ist in Form einer Reihe angegeben. 

AmioTaqmr-PaccMoTpena ~syfitepnan aagasa 0 Tennoo6Mene npn 06Teuamin nnocnoti 
nJIaCTHHb1 KOHegHbIX p33MepOB IIpkI nOJI3J'WeM peHEHMe TeYeHHR. Tenno IIOABO;lEtTCH IE 

CHCTeMe nn60 3afQaHHbIM TeIIJIOBbIM IIOTOKOM Ha BHeIIIHett IIOBepXHOCTH, nn60 npn IIOMOIL(H 

pacnpe~enennoro ncT09nuna Tenna 3 rmacruue. Pacnpe~e.3eume TeMnepaTypbt 3 tmacTnne 
I! B lKHJ(KOCTl4 IIOJQ'WHO B BllAE! pH@I. 


