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Abstract—The problem of heat transfer to a slug flow past a flat plate of finite dimensions is considered.

Heat is introduced to the system either by means of a known flux at the outside surface of the plate or by

means of a distributed heat source in the plate. Two dimensional conduction occurs in the plate. The
temperature distribution in the plate and fluid is found in terms of a series expansion.

NOMENCLATURE
a, plate thickness;
An, By, Fourier coefficients;
b, =g/L;
ky, ks, solid and fluid conductivities;
K> = ks/ kf >
L, plate length;
Gws heat introduced at plate surface;
gs, heat generation in solid;
Qu, = quwL[ksTyo;
Os, = qsL?/ksTjo;
s, Laplace transform variable;
Ty, Ts, fluid and solid temperatures;
Tro, inlet fluid temperature;
Vx, fluid velocity;
v, = pgL/a;
x, direction along plate;
X, = x/L;
¥, direction normal to plate;
Y, = y/L;
a, fluid thermal diffusivity;
Ans eigenvalue;
bs, = (Ts — Tyo)/Tyo;
b, = (Ty — Ty0)/Tyo.

INTRODUCTION
IN MosT analyses of heat transfer to forced
convective flow, the temperature, the heat flux,
or a combination of the two is given on the
boundaries; the temperature distribution in the
fluid and (or) the heat flux into the fluid are then
determined. In some cases, however, the tempera-
ture or flux conditions at the bounding surface
cannot be known a priori. In these cases, it is
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necessary to solve the equation of energy
transport for the fluid simultaneously with the
energy equation for the bounding solid. The
equations are coupled by appropriate boundary
conditions at the fluid-solid interface.

Heat transfer to slug flow between flat plates
and in a circular tube has been studied by Chu
and Bankoff [1]. A step temperature change
was imposed on the outside surface and the
heat flux and temperature on the inside surface
found by means of a Fourier transform. Con-
duction occurs in the infinite length walls in two
directions, i.e. parallel to and normal to the
direction of flow. Numerical results show that
the wall conduction smooths out the region of
high heat flux which would occur if the wall had
negligible thickness. Perelman [2] considered
the problem of slip flow past a semi-infinite
(semi-infinite both parallel to and normal to the
direction of flow) solid having distributed heat
sources. An analytical solution was obtained for
the integral equation arising from coupling the
Laplace transform solution for the fluid and the
Fourier transform solution for the solid. No
numerical results were given. Perelman also
considered the more complex problem of trans-
port to a laminar boundary layer. Some studies
have also been made of the effect of one dimen-
sional wall conduction in smoothing out peri-
pheral temperature gradients in circular tubes
[3] and in rectangular channels [4].

In this work, fluid with a constant velocity
profile flowing past a finite length plate will be
considered. The system is shown in Fig. 1. The
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Fic. 1. Plate and fluid.

fluid approaches at a known temperature, and
heat is introduced by means of a known heat
flux at the bottom of the plate or by distributed
heat sources in the solid. Conduction occurs in
the plate in both the longitudinal and transverse
directions; heat flows in the fluid by convection
in the direction of flow and by conduction away
from the plate. Expressions for the temperature
distributions in the solid and in the fluid are
found and the effect of two dimensional wall
conduction on heat transfer to a slug flow is
determined.

ANALYSIS
For slug flow, constant fluid and solid pro-
perties, and negligible fluid conduction in the
direction of motion, the dimensionless energy
equations for the fluid and solid respectively are

o0, 226,
Vex~ore M
020 %0
ox2T oy =~ &)
with boundary conditions
X=0 b =0 b<Y< o
Y =0 Bf =
X=0 00
X — 1} 5)?: O0<Y<b
803
Y=0 ES A —Quw
Y =20 0s = 6y
20, oy
Y =5 Ksy=ay

The last two conditions insure continuity of
temperature and heat flux at the interface between
the solid and fluid.

Consider first the case in which Q. (X), the
heat flux at Y = 0, is an arbitrary function of X
but in which Qs, the heat generated within
the solid, is zero. Under these conditions, the
solution of equation (2) satisfying the boundary
conditions at X =0, X =1, and Y =01s

8; = AoY + By + 3, cos AnX(Ap sinh A Y -+
n=1
By cosh A, Y) 3)

where A, = nw

Ao= — [ Qu(X) dX

N o—

[
7
= e L

n =

Ou(X)cos X dX

n=12,....

The constants By, Bi, Bs, ... remain to be
determined. From (3), the temperature and the
temperature gradient at the solid-liquid inter-
face (Y = b) may be determined:

8,(X, b) = Aoh + Bo + 3 c08 AuX(Ay sinh Ab
n=1
-+ Bpcosh Apb) (4)

26,(X, b)
oY

= Ao + § cos A X(Apin

n=1

cosh Aub + ByAg sinh Azb)  (5)

The as yet unknown constants B will be deter-
mined by the use of equations (4) and (5), and
the differential equation and boundary con-
ditions for the fluid. The Laplace transform of
(1) yields

VS@f = a*“* (6)

which has a solution

=Cexp[—VistY] + Dexp[+VEstY]
(M

The constant D is zero since the temperature

must remain finite at ¥ = . From (7), the

gradient of the transformed fluid temperature at
Y = b is seen to be

o0,(s, b
—’;)(—;,—) ——VistCexp[—Visth] (8)
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The constant € is evaluated by equating (8)
to the transform of (5). If C is found in this
manner and then substituted into (7}, the trans-
formed temperature distribution in the fluid is
seen to be

= —KV-tg-dexp [—V}s¥(Y — b)]

Ap . . 3§
{—S— + Z A;é"‘:;"‘;‘% gf';fg;ig; cosh Anb’ ‘%"

Bl

By use of the Convolution theorem the inverse
is found fo be

O = — KV} 1
e (g5
~ AV HY — b) erfe (V %(-:rﬁ) (10)

4 3 [Anracosh Ab + Budy sinh Anb]
=1

VHY — by
x exp [ — }
J COS Ayy wx T") dn}

HX — g}

o

0

Equations (3) and {10) now give the tempera-
ture distribution in the selid and fluid respectively
in terms of the stili undetermined constants
Bo, Bi, B, .... There remains one unused
boundary c¢ondition to determine these con-
stants, viz. continuity of temperature at ¥ == b,

where 0 and 8, are given by (10) and (3) respec-
tively. Integrating equation {11) over the length
of the plate vields

Fox, by dX — [ 80X, B)dX (1)
Q [+]

or

Agh + Bo= — KV 4Af +
{3n

z [Anhn C()Sh /\nb + B:ni\n sinh )\nb} g (13)

Multiplying (11) by cos jwrX, j=1, 2,... and
integrating yields

1 1
FO(X, Bycos X dX = [ 8 (X, B)
@ &

cosfrXdX j=12,... ({14
or
= 1
—K¥- ﬁ{zA j Xcos X dX +
© 0
S [AnAn cOSh Aub -+ ByAgsinh A,0) ¢ (15
w1
1 x N
cos
j‘ cosm}(j X - n’?)* dy dX}
0 o

J=1,2,....
Equations {14) and {I15) may be rearranged in
the form

j=0,1,2,. (16)

4]

2 EpnBy = F;

R}
where the Ej and Fy are known. The infinite
system of equations was truncated and solved
for B, using Jordan’s method. It was found that
by using up to a 40 X 40 matrix that accurate
values of B, could be obtained up to # = 20,

Consider now the case of constant distributed

heat generation in the solid with no heat input
at the outside surface of the plate, i.e. @ == const,
Ow = 0. The temperature in the solid is seen
to be
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6s(X, ¥) = B, -- 3 B, cos AuX cosh A, ¥ — T T
n=1 !

2 |

%Qs (17) o4 /}?

At Y = b, there is

b2 ,
05(X, b) = ~Q—Qs + B, +

3" B, cos AeX cosh Xab  (18)
n=1

WX, ) _

—bQs — 3, B,Aacos M X sinh Anb
ay n—=1

(19
Equations (4) and (5) become for constant Qw

By(X, B) = —bQuw + 3 Bncos AuX cosh Aeb
n=1
(20)

e e e

=
<

o

=" = = Qp 2 BaAn cOS A X sinh Apb Fic. 3. Temperature at solid-liquid surface.
nel K =644, V=1362% 105, Q — L.

@n L,b = 0;11, b = 001; 1L, b = 0-05; 1V, b = 0-1.

It is seen by comparison of (18) and (19) with
(20) and (21) for @ = Qsb, that if (18) and (19)
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FiG. 2. Temperature at solid-liquid surface. FiG. 4. Temperature at solid-liquid surface.
K=644, V=181 x 105 0 = 1. V=181 x 105 Q = 644/K, b = 0-1.

I, b =0;1, b= 001, 1L, b = 0-05; IV, b = 01, I, K = 644; 11, K = 644; 11, K = 64 000,
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were used along with the energy equation for the
fluid to determine the constants B, the results
would be

. H2Qs

B, = By — --29w

The temperature at the solid-liquid interface,

and throughout the fluid, is therefore the same

for the case of constant heat generation through-

out the solid as for a constant heat input at the

outside surface of the plate. The interface

temperature is again given by Figs, 2, 3, and 4.

The temperature distribution in the solid is, of
course, different in the two cases.

22)

DISCUSSION OF RESULTS

The coefficients B, and the temperature at the
solid-liquid interface were evaluated for 0-0 <
b <01, 644 << K < 64000, and 1-81 x 10° <
V< 1:36 x 107. The effect of wall conduction on
heat transfer to the fluid increased with increas-
ing plate thickness to length ratio b, increasing
conductivity ratio K, and with decreasing
dimensionless velocity ¥, where V is the product
of the Prandti number and the Reynolds number
based on plate length. For K == 6-44, wall con-
duction has a negligible effect, even for the
lowest fluid velocity and thickest plate con-
sidered. The temperature of the solid-fluid
interface is shown in Figs. 2 and 3 for K = 644,
V=181 x 105 and 3-62 x 10% respectively,
with dimensionless plate thickness b as a para-
meter. For zero plate thickness the temperature
assumes the well-known parabolic shape, as
shown by the curves b == 0. For increasing b,
the temperature distribution tends to be leveled
off, as would be expected. From Fig. 2, it is
seen that for ¥ = 1-81 x 105 there is an effect
of wall conduction even for the thinnest plate
considered (b == 0-01). The effect increases with
increasing plate thickness. For V' = 3-62 x 108
(Fig. 3), the effect is very small for b = 0-01.
Figure 4 shows the surface temperature dis-
tribution as a function of X for a plate thickness
of 0-1. K = 6-44 gives a surface temperature
distribution which is essentially that which
would be obtained by neglecting the plate con-

duction. The highest conductivity ratio con-
sidered, K == 64 400, results in a surface tempera-
ture distribution which is almost constant; a
constant temperature would result from an
infinite K. Values for the coefficients By as well
as the temperature at the liquid-solid surface
for other values of the parameters can be found
in reference [5].

In summary, it may be said that for the
physical situation considered here that wall
conduction will not be important for b < 0-01
or for K < 6-44. If both of these conditions are
not met, wall conduction may or may not be
important depending on the values of the other
parameters. This is to be contrasted to the results
on an infinite length plate of finite thickness {1]
in which even in the case of K = 0-4 the surface
temperature distribution is affected by wall
conduction because of the upstream conduction.
A study of the effect of wall conduction on peri-
pheral temperature distributions [4] in a channel
showed that there is an effect of wall conduction
for lower values of K than would be significant
with the geometry considered in this work.

It is of interest to consider the effect of plate
length on the heat transfer. For small values of
K, plate length has a negligible influence. When
K is small, the solution approaches that of heat
transfer to a slug flow neglecting wall conduction,
in which case plate length is mot important.
For higher values of K, increasing the plate
length will increase the solid-liquid interface
temperature and therefore the heat transfer to
the liquid at every position along the plate if
the heat per unit length introduced to the system
is the same. This may be most easily seen for
very large K. In this case the interface tempera-
ture approaches a constant. In order for the
total heat transferred to the liquid to remain
equal to the total heat introduced to the plate,
the heat transfer to the liguid at an upstream
position must increase to compensate for the
fact that at a downstream position the heat flux
to the fluid will be less than that into the plate
at the same value of X.
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Résumé—Le probléme du transport de chaleur avec un écoulement a vitesse uniforme le long d’une
plaque plane de dimensions finies est étudié. La chaleur est introduite dans le systéme, soit au moyen
d’un flux de chaleur connu a la surface extérieure de la plaque, soit au moyen d’une source de chaleur
répartie dans la plaque. Une conduction bidimensionnelle se produit dans la plaque. La distribution
de température dans la plaque et le fluide est obtenue sous la forme d’un développement en série.

Zusammenfassung—Das Problem des Wiarmelibergangs bei einer Kolbenstromung entlang einer ebenen

Platte endlicher Abmessungen wird theoretisch untersucht. Wiarme wird dem System entweder als

bekannter Wirmefluss an der dusseren Plattenoberfliche oder durch verteilte Wiarmequellen in der

Platte zugefiihrt. Zweidimensionale Leitung tritt in der Platte auf. Die Temperaturverteilung in der
Platte und in der Fliissigkeit ist in Form einer Reihe angegeben.

AunHoTanuA—PaccMOTpeHa IByMepHAsA 3ajaua 0 TeIuioo0OMeHe Opu OOTeKaHMH INIOCKOI

IJTACTHHBL KOHEYHHIX DPAasMEepOB IpY NOJI3ymeM peuMe reueHusa. Temmo mogmoauTcs K

cucreMe a100 3aAHHEIM TEIJIOBEIM ITIOTOKOM Ha BHeNIHel MOBePXHOCTH, au00 IMpH MOMOIIM

pacmpeeneHHOro NCTOYHMKA TeMla B IIacTHHe. Pacrpenesnenue TemmepaTypsl B ILNIACTHHE
N B JKHAKOCTH TOJYYeHO B BUfe pAfa.



